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Abstract

‘J’his paper addresses the problem of controlling a ma-
ni]mlator  in compliant motion while in contact with an
environment having an unknown stiffness. Admittance
control is used as an czplzczt force control sc}]eme in
which a force setpoint  is specified and is tracked by the
force compensator. Two adaptive PID and 1>1 force
colnpcnsators  arc propcrscd. The compensators ensure
robust tracking of step force setpoints and rejection of
constant disturbances. Since the environmental stiff-
IICSS can typically vary by several orders of magnitude,
compensator adaptation is used to ensure a stable and
uniform systcm  performance. Dynamic simulation rc-
SU1 ts for a 7 DOI{’ Robotics ILesearc}l arm arc presented
to demonstrate the eflicacy of the proposed admittance
co~)trol schcmc in executing contact tasks. 1

1 ‘Introduction

llobust and rcl iablc operation of manipulators in con-
tact with objects in their environment is the basic
requirement for successful execution of many robotic
tasks. Stable control of robot-environment interaction
poses a i,ccl)l]ically  chal]cnging  prob]cm,  and has at-
tracted tllc attention of several roboticists  for almost
two dccadcs  [SCC, e.g., 1-3]. In particular, compli-
ant ]notion control, which is in esscncc position-based
force co]]trol,  h%s been suggested by Kazcrooni  [4] and
I,a\t’rcllcc  [5].

‘1’llc otrjcctivc  of this paper is to develop a simple
and IJragmatic  approach to contact force control using
tl]c compliant motion framework. The proposed ap
proacll,  called adaptive  adrrtztta7~cc  control, is an explicit
——

‘ ‘lIc rrxcarch  dcscriimd in this paper  wrM carried out at
the Jet J’repulsion I,aboratory, California lrrstitutc of Technol-
01.LV,  under contract with the National Aeronautics and Space
Admil]ist[ation.

force control schcmc  which cnsums  robust force sct-
point tracking with desirable dynamic response. ~’his
approach is based on the concept of mechanical admit-
tance, which relates the contact force to the resulting
velocity perturbation. “J’hc  adaptation of the admit-
tance controller provides improved performance under
gross variation of the environmental stiffness.

‘J’hc paper is structured as follows. Section 2 dis-
cusses explicit force control within the compliant mo-
tion framework, Two adaptive admittance control
schemes resulting in PII) and PI force compensators arc
discussed in Section 3 to ensure force sctpoint tracking.
1 n Section 4, the Robotics Research arm is used in a
series of dynamic simulations to demonstrate force con-
trol. The paper is conc]udcd in Sccticrn 5 with a review
and general discussions,

2 Explicit Force Control in
Compliant Motion

The under] ying concept of compli  ant motion control is
to take a position-control]cd robot as a tra.sclinc  sys-
tem and to make the necessary modifications to this
systcrn to enable execution of constrained t casks  that
require robot interaction with the environment. Figure
1 shows the block diagram of a position-basccl  explicit
force control system, including the reference position
A’r and the force sctpoint  J’;, when the robot interacts
with the environment. The contact force F is fed back
to the force compensator K(s)  w}lich produces the po
sition perturbation A’f, so that tllc end-cffcctor  tra:ks
the modified commanded trajectory X. == X. + Xf.

Now, since the manipulator position control systcm
ensures Cartesian trajectory tracking, the internal posi-
tion controller, in effect, decouples the robot dynamics,
and we can replace the cnd-effecter position vector X in
the control diagram by the scalar z, which can represent
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any clement of X. Furthermore, following Kazerooni
[4], Lawrence [5], and other researchers, it is reason-
able to model each position-controlled end-effecter co-
ordinate by a second-order linear continuous-time sys-
tem, so that for each end-effecter coordinate the scalar
transfer-function relating the commanded position XC
to the actual  position z is given by

x(s)
G(s) = — =

Km b
xc(s) J~s2  +- Bms +- Km ‘sZ+-as  +-b

(1)
where Jm, B~, and Km are the position-controlled ma:
nipulator  mass, damping and stiffness parameters in
Cartesian-space respectively, a = ~ and b = ~.
This simple model can adcquatel  y account for t~e
small time-delays involved in the forward and inverse
kinematic calculations as well as the dynamics of the
position-controlled joint servo loops. This model is par-
ticularly suitable for industrial robots that use high gear
ratios  which attenuate the nonlinear manipulator dy-
namics and make the second-order joint motor dynam-
ics donlil~ant,.

‘J’]]c  environment can often bc modeled as a linear
spring with cocficicnt of stiffness Ken along the Carte-
sian axis of interest. Therefore, the force-displacement
model for the cnviromnent  is given by Hooke’s law as

where Xe is the nominal position of the environment.
Similarly, the force/torque sensor mounted on the end-
cffcctor can bc modeled as a pure spring with the stiff-
ncs cocflicicnt  ~Sn, since the dynamics of the sen-
sor can bc ncglcctcd  in comparison with the compen-
sator and manipulator time-constants. Therefore, the
cffcctivc stiffness of the sensor plus the environment
in a Cartesian direction is given by K. = (1/K.~  +
I/K.,, )-l. Note that although the manipulator-
cnvironrncnt interaction can bc modeled in detail as
a high-order dynamical system, the stiffness is often
the clominating  factor in contact task such as assenl-
My, mating, and dcburring  [5, 6, 7]. Furthermore, this
simple model is mathematically tractable and has been
widely adopted by several researchers. Note that dur-
ing contact with the environment, the dynamic model of
tl)c position-control]cd  cnd-cffcctor  coordinate is mod-
ified  by the environment duc to natural force feedback
as

(qs) -. ~(s) -. 6
xc(s)

(3)
5 2 + as + b’

wl)cre  U = _.
in tllc next .&ct,ion,  we develop two force compen-

sators bsscd on admi tt ancc control to accomplish force
sctJ>oint  tracking.

3 Adaptive Admittance Control

In contrast to pure position control which rejects dis-
turbance forces in order to track a given reference m~
tion trajectory, the force compensator K(s) attempts
to comply with the environmental interaction and re-
act quickly to contact forces by rapidly modifying the
refcrcncc  motion trajectory. A proper measure of effec-
tiveness of the compliant, motion control is the mechan-
ical admittance Y defined as [8]

y=: (4)

where VI is the end-c ffector velocity and F is the con-
tact force, both at the point of interaction. A large ad-
mittance corresponds to a rapid motion induced by ap
plied forces; while a small admittance represents a slow
reaction to cent act forces. Based on the above discus-
sions, the force compensator transfer-function K(s) =
$f#  is cxpmssed  as the product

K(s) = ; . Y(s) (5)

where the admittance Y(s) relates the force error e =
F, - F to the end-cffector  velocity perturbation v,(s);
i.e., Y(s) = *. For a known environmental stiff-
ness, an admittance Y(s) can be constructed to achicvc
a desirabl  c force response with small or zero error, low
overshoot, and rapid rise time. However, the same ad-
mittance  typically exhibits sluggish response in contact
with softer environments, and goes unstable when con-
tacting  stiffer environments. In other words, bccausc
difTcrcnt environments have diverse stiffncas which can
vary over several orders of magnitude, a fixed admit-
tance design based on a nominal cnvironrncnt leads to
non-uniform dynamic performance and often instabil-
ity. To overcome this problem, we propose adaptive
admittance control where the parameters of the admit-
tance Y(s) are tuned automatically on-line based on
the force tracking performance of the system. This ap
preach providw stable uniform performance under gross
variations in t}lc environmental stifTness.

In this section, we consider two classes of adaptive
admittances that can be used for force control within
the compliant motion control framework. The sccond-
ordcr admittance leads to an adaptive 1’11) force com-
pensator,  while the first-order admittance leads to an
adapt ivc }’1 force compensator.

3.1 Adaptive PID Force Compensator

In this section, an adaptive second-order admittance
control scheme will bc dcvclopcd  to accomplish force
control within the compliant motion framework.



Consider the admittance-based compliant control
system shown in Figure 1. Let us choose a second-order
admittance model as

Y(s) = kdS2 +- kps + ki (6)

resulting in the PID force compensator

~(S) = :. y(s) = kds + kP +- : (7)

where {kP, ki, k~} are the promotional, integral, and
derivative force feedback gains, respectively. This leads
to the force feedback law

d

/

t
xj = kd—ei- kPei ki

dt
edt

o
(8)

/

t
kd(t) = k@) i- ‘yI q(t)i(t)dt.  i- ~zq(t)d(t)

o

where (wP, wd ) are the positive position and velocity
weighting factors, (al, /31, ~1 ) are the positive integral
adapt ation gains, (a2, ~, -y2 ) are the positive or zero
proportional adaptation gains, and [9(()), kP(0), kd(())]
are the positive initial values chosen to provide appro-
priate initial position perturbation signal and initial
proportional and derivative gains for the control sys-
tem. The force control scheme is shown in Figure 2,
Using (12), the force control law (9) can be written as

J

t
Zf(t)  = zf(0)+kj(t)e(t)  +-k~ e(t)dt+ kj(t)d(t)  (13)

o

For the purpose of control law development, we consider
the control signal XJ to be comprised of proportional
and derivative terms in {e, i} together with an auxiliary
signal g(t) which contains the integral term, t}]at is

$j(i!) = (J(~) +- kp(~)e(~)  + kd(t)6(t) (9)

where {kP(t), kd(t)}  are the adaptive proportional and
derivative force feedback gains, respective] y. On apply-
ing the control law (9) to the system shown in Figure 1,
and noting that Fr, ke, and Ze are constant, we obtain
the force error dynamics as

;+ [a+ bkckd]ei [b’+- bkekp]e  = b’[~r  –~x]  –bk,g  (10)

where l’~ = k. [$z, - x.] is the steady-state con-
tact force duc to constant Z. with no force feedback
(xf = O). F?uation  (10) represents the “adjustable sys-
tcm” in tllc model-reference adaptive control (MRAC)
framework. Suppose that the desired behavior of the
force tracking-error cm is specified as

Where k;(t) = ~lwd +- OZWP + kp(t) is the adaptive pro-
portional gain, kf = crlwp is the constant integral gain,
and k;(t) = ~zwcj + kd(~)  is the adaptive derivative gain
and xf (0) = g(0). It is seen that the position pertur-
bation  X!(t) due to contact force is generated by a PID
controller driven by the force tracking-error e(t), where
the controller is composed of a constant-gain PID term
and an adaptive-gain PD term.

Nom a practical point of view, the contact force F
mca.sured by the force/torque sensor is often a noisy
signal and hence direct differentiation of this signal to
obtain ci is undesirable. To overcome this problcm, e
is replaced by –kei, ass suggested by I’ = ke(z – Ze),
where F’, is constant. Ilwthcrmore, to ensure robust-
ness in the presence of the unmodelcd environmental
dynamics, we slightly modify the adpatation laws (12)
using the a-modification terms [10]. Thus, the modified
adapt ation laws using the velocity signal & are given by

Zf(t)  = g(t) + kp(t)e(t)  – h(~)~(~)

& + 2<w& +- w2em  = O (11)

J

t

/

t
g(t) == g(o)+- al q(t)dt  i 02q(t)  – al g(i)dt

where ~ and w are the user-specified damping ratio and o 0
unclamped natural frequency of the force error dynam-
ics. lr~uation  (11) constitutes the “rcfcrencc  model”

J

t

J

t
withi]l  the h41tAC framework. Following [9], the adap kp(t) = kp(0)+-/31 q(t)e(t)dt+-/32 q(t)e(t)-a2 kp(t)dl

o
tation laws for {g(t), kp (t), kd(t) } which ensure that the 0 ( 1 4 )
solution c(t) of the error dynamics (10) tends Mymp-

/

t

/

t
toricall  y to the solution en,(t) of the rcfcrcnce  model k.(t) = kV(0)–A1 q(t)i(t)d&–A2q(t)  i(t)–a3 kti(t)dt
(11 ) arc given by o 0

q(t) = wpe(t)  – Wvi(t)d~) = Wpe(t) i- ?@(t)

J

t w}lcrc Al = ~lk~, Az = ~zk~,  WV = wdk~  and UI, U2, CJ3
g(t) =- g(o) + cl, q(t)d +- Cqq(t) arc small positive constants. The addition of the a-

0 modification terms enhances robustness in the presence

J

t
kP(f) = kP(0)  -i /31

of the unmodcled dynamics, at the price of a ‘residual
q(t)c(t)dt  +- &q(t)e(t)  ( 1 2 )

o force tracking-error of Order (o*),



3.2 Adaptive PI Force Compensator

In this section, an adaptive first-order admittance con-
trol scheme will be developed for force control within
the compliant motion framework.

Consider the adrnittance-bmed  compliant control
system shown in Figure 1, with the first-order admit-
tance model

Y(s) = kps+ ki (15)

resulting in the PI force compensator

K(s) =;. Y(s) =kpi ~ (16)

and t,hc force feedback law

J

t

Xf = kpe i- ki edt (17)
o

where {kP, ki } are the proportional and integral force
feedback gains, rcspcctivcl  y. In comparison with the
second-order admittance model (6) used in %ction 3.1,
the first-order admitt ante model (15) has the advan-
tage of not requiring the rate-of-change of the force er-
ror e, which is a noisy signal. As a result, the PI control
schcmc  is much simpler to implement in practice. howe-
ver, t})c price paid for this simplicity is that there are
now insufficient adjustable gains in the compensator to
ensure that the error dynamics (10) follows an arbi-
trary user-spccificd rcfcrcnce model (11). In this case,
tllc force feedback gains are chosen to ensure mcrcl y
that the error dynamics is asymptotically stable, so that
e(t) --+ Oast-+ cm.

App] ying the PI control law (17) to the system shown
in Figure 1, wc obtain the dynamic model of the force
tracking-error as

J

t
C+ ai+ [b’+ bkekP]e+-  bk~ki edt = b’[Fr  – Fr]  (18)

o

It is seen that the cocfilcicnt  of& in the error dynamics
(18) is constant and can not bc affcctcd by the con-
troller gains {kP, ki }. ‘1’his is expcctcd since the force
compensator dots not have any active damping term
kdd to contribute to the passive damping “a” of the
systcm. Now, we need to find the adaptation laws for
the proportional gain kp(i?)  and the integral gain ki(i?)
to clmlrc  that (18) rcprcscnts  an asymptotically stable
systcm.

7’0 simplify the stability analysis, we choose the in-
tegral  gain ‘ki as a constant and employ an adaptation
law for the proportional gain kp as a nonlinear function
of tllc force tracking-error e. We adoJ>t the I.yapunov
approach to investigate the stability of the third-order
nonlinear error differential equation (18). For a class
of tllird-order nonli~)ear  differential equations such as

(18), Barbashin  [11] has obtained specific stability cri-
teria using a Lyapunov analysis. Applying Barbashin’s
method to the error dynamics (18) yields the following
three stability conditions:

(i) a > O

(ii) ~keki[f~  edt]2 > 0  ~ ki > 0 (19)

[p *I( i i i )  a[b’ +- bkekp]  - bk e k i > 0  -+ ki < a k +-

‘.l’bus, wc conclude that the stability of the nonlinear
differential equation (18) is guaranteed provided that

[ 1O<ki<a  kp+-~
e

(20)

Note that conservative estimates of the attenuation fac-
tor a and the forward path gain ~ can readily bc ob-
tained from the open-loop rmponsc of the contact force
F to the step reference position x. with no force feed-
back (zf = O). Furthermore, observe that closed-loop
stability is attained for all environmental stiffness ke
provided that the following relationship holds bctwccn
the proportional and integral gains

O<ki<akp (21)

It is seen that the stability condition (21) does not con-
tain the stiffness of the environment kc. Onc viable
choice for the proportional gain kp as a function of the
force tracking-error e is given by

kp(t) = kpo i- cre2(t) (22)

where kpo  is the positive constant value chosen for kp
when e = O, and o is the positive constant adaptation
gain chosen by the user to reflect the sensitivity of kp to
e. Notice that the adaptive term cre2 contributes only
to the transient response by increasing the proportional
gain k, so as to reduce the tracking-error e. When e is
small, the effect of ae2 is diminished and kp restores to
its initial value kpo.  I’Yom (20) and (22), provided that
the controller gains are chosen such that

[ 1o<k<ako,~
i P bke

(23)

the stability of the closed-loop compliant control system
is guaranteed. Figure 3 shows a block diagram of the
adapt ive PI force control scheme.

F@ation  (22) implies that

kp(t) = 2ae(t)e(t) (24)

When e and e have the same sign, the force response has
an unfavorable trend since the force error is negative (or
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positive) and is decreasing further (inc~casing further).
In these CSSW, ei >0 and from (24), kp >0, and the
controller gain kP increases. When e and e have oppo-
site signs, the force response has a javorable trend since
the force error is positive (or negative) and is decreasing
(or increasing) toward zero. In these cases, e& <0 and
kP <0 which means that kP will decrease. We conclude
that when the force response has an unfavorable trend,
the proportional gain increases rapid] y to’ correct the
response; whereas during a favorable trend, the gain
dccrcascs  since no corrective action is called for. Notice
that the proportional gain will adjust continuously un-
til the steady-state is reached when e = 6 = O and kP
a.swmcs  the specified constant value kPo.

4 Simulation Study

‘1’hc  force control scheme dc.scribed in Section 3 is
now applied through computer simulations to the 7
DOF llobotics  Research Corporation (RRC) Model K-
1607 arm} shown in Figure 4. ‘J’he full nonlinear dy-
namic model for this arm is integrated into a graphics.
based robot simulation environment hosted on a Silicon
Graphics Persona] IRIS workstation [12]. In the simula-
tion, the robot position control systcm employs a high-
pcrformance adaptive controller described in [1 3]. This
controller ensures that any commanded cnd-cffcctor pG
sition trajectory xc is tracked accurately.

‘1’he simulation study demonstrates the capability of
the proposed adtnittance control schcmc  to achicvc a
desired cnd-cfTcctor/environment contact. force. In this
study, a frictionlcss  reaction surface modeled as lin-
carl y elastic with a stiffness of 1001b./in  in series with
a damper having the friction cocfflcicnt  of 10lb.scc./in
is placed in the robot. workspace. ‘1’his  ‘reaction sur-
face is oriented normal to the y axis and is located at
ge z.- -22. 125; thus the measured contact force F is
modc]cd as

{
1“ = 0 if y ~ –22.125

IOO(y-1 22.125) + 10~ if y > –22.125

‘1’he task requires the exertion of a 10lb  contact force
normal to the reaction surface while  tracking a smoot}]
5in trajectory tangent to the surface. Thus wc deflnc
l’; ~- 10 and Xr = Xi + 2,5[1 - COS(7T/5)t]  for t C [0, 5],
where xi is the z component of the initial end-cffector
position, Iror simplicity, t}le end-cffcctor  orientation
and z coordinate are maintained at their initial values
throughout the task.

To illustrate robustness of the force control sc}lcmc
in accommodating unexpected changes in the environ-
mental stiffness, the stiffness kc is changed abruptly
from kc = 1001b/in  to k, = 251b/in  at the midpoint

of the Z, trajectory at t = 2.5 seconds. ‘l’he control
objective is to maintain the contact force at 10lb de-
spite this stiffness variation. This situation can occur
in practice when tracking along a surface composed of
two materials with different stiffnesses,

Let w% apply the adaptive 1’1 force control law

J

t
I/~(~)  = [kpo  + ae2(~)]e(i)  + ki e(t)cf% (25)

o

developed in Section 3.2, where e = F, - F is the force
tracking-error. This control scheme has the attractive
feature of not requiring force rate information for im-
plementation. The desired force sctpoint is specified
as

{

5[1–cos7rt]  t<]
E-(t)  = lo t>l

so that the force sctpoint rises smoothly to 10lb in 1
second.

First, the open-loop response of the contact force
F to the step reference input y. with no force feed-
back (yf = O) is obtained, The response indicates that
the robot-plus-position ,controllcr-plus-reaction surface
can bc approximated by a linear second-order transfer-
function with the forward path gain & = 100 and
the attenuation factor a = 10, since for the command
yr = 0.2 inches the force response reaches the steady-
statc value F~~ = 20 lb in 1 second. Following Sec-
tion 3.2, the integral gain k i and the initial propor-
tional  gain kPO arc chosen as ki = 0.10 and kPo = 0.004

[ b’] ‘hcto satisfy the inequality O < k i < a kPo  +- ~

rate-of-adaptation of the proportional gain is chosen as
a = 0.0001 and the reference position is set to yr =
0.2 inches. Figures 5a and 5b show the variations of
the contact force F and the adaptive proportional gain
kP during the task. Ilom Figure 5a, it is seen that F
tracks the desired force setpoint F, in the steady-state,
which is rcachcd in 1 second. The contact force is then
perturbed at t = 2.5 seconds duc to the change in en-
vironmental  stiffness, but recovers subsequently duc to
the integral action to settle again at the desired SCL
point F. = 10lb  in the steady-state. Figure 5b shows
that the adaptive term 0C2 (i!) in the proportional gain
kP causes an increase in the value of kP during the tran-
sient  responses, where there are discrcpencics  bet wccn
the actual and desired forces. Once the force tracking-
error e diminishes to zero in the steady-state, the pro
portional gain returns to its initial value kPo.  IIence,
the compensator adaptation improves the transient be-
havior by increasing kP automatically when e is large,
without affecting the steady-state performance.



5 Conclusions

Force control based on compliant motion is discussed
in this paper. The admittance control approach is an
cxpl icit force control scheme that uses force setpoint
as command and accomplishes contact force control di-
rectly,  The adaptive compensator gains ensure stable
and uniform performance in contact with environments
having unknown stiffnesses.

It can readily be shown that when the constant force
setpoint  Fr and the step force disturbance Fd are ap
plied to the systcm, the contact force F tracks the force
sctpoint F. and rejects the force disturbance Fd when
the steady-state is reached. Furthermore, when the sys-
tem parameters {a, b, b’, k= } or the compensator gains
{kP, k,, kd} undergo gro~  and arbitrary variations, the
control systcm is robust in the scn.se that the sctpoint
regulation and disturbance rejection characteristics are
retained, provided thut the closed-loop system remains
stable.

WC conclude that the adaptive admittance control
schcmcs  developed in this paper for generating the po.
sition perturbation are extremely simple and computa-
tionally very cfllcient,  As a result, t}m control schemes
can bc implemented for real-time force control with a
}]igh sampling rate, which is critical for closed-loop sta-
bility of force control loops that contain typically large
cnviromncntal  stiffness  ke. Furthermore, since the con-
troller terms do not require knowledge of x. and k, and
are adjusted on-]inc based on the force tracking perfor-
mance through e and i, the controller can rapidly adapt
itself to gross c}langcs  in the environmental parameters
x. and kc as demonstrated in Section 4.
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Figure 5a. Varlatlon of the contact force F in the simulation study
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Figure 5b. Variation of the adaptive proportional gain kP in the simulation study


